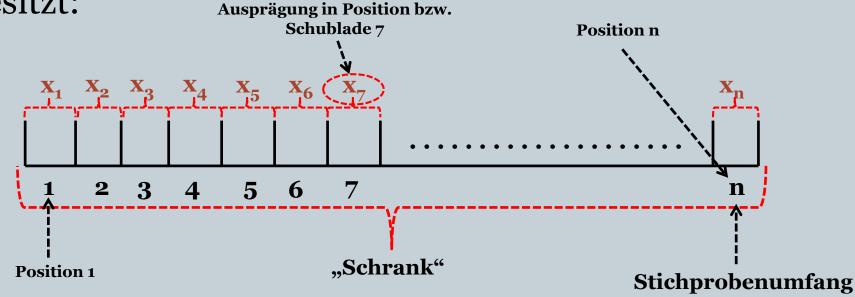
Lagemaße – Übung

MODUS, MEDIAN, MITTELWERT, MODAL KLASSE, MEDIAN, KLASSE, INTERPOLATION DER MEDIAN, KLASSE MITTE

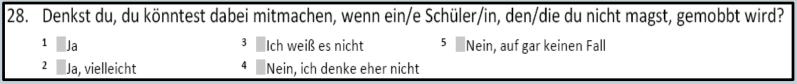

Zentrale Methodenlehre, Europa Universität - Flensburg

Stichprobe: abstrakte Struktur

 $\binom{2}{2}$

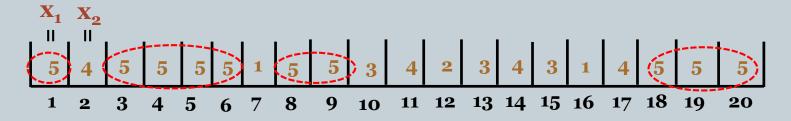
Man könnte sich eine Stichprobe als einen Schrank mit Schubladen vorstellen, dessen Inhalt nur einen Wert besitzt:

Ausprägung in Position bzw.


Komponenten:

- n Positionen bzw. Schubladen bzw. Stellen: 1, 2,, n
- X_i: Ausprägung in der Position bzw. Schublade i

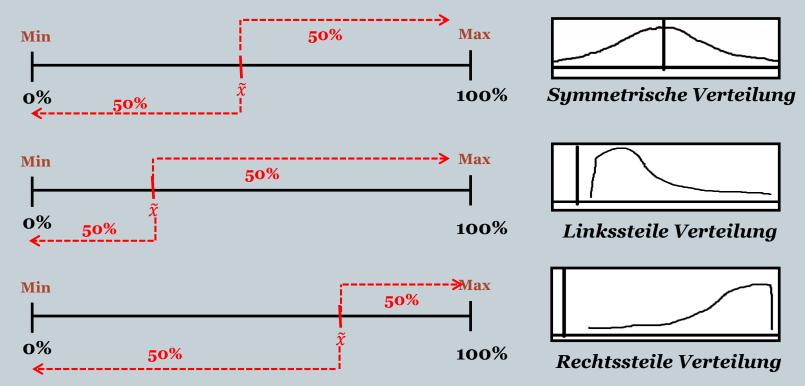
Lagemaße: Modus


3

Modus der Stichprobe (D): Die häufigste Ausprägung eines Merkmals.

Quelle: Bundeszentrale für politische Bildung; Projekt: Mobbing bei uns nicht!? http://www.bpb.de/lernen/unterrichten/grafstat/46487/projekt-mobbing-bei-uns-nicht

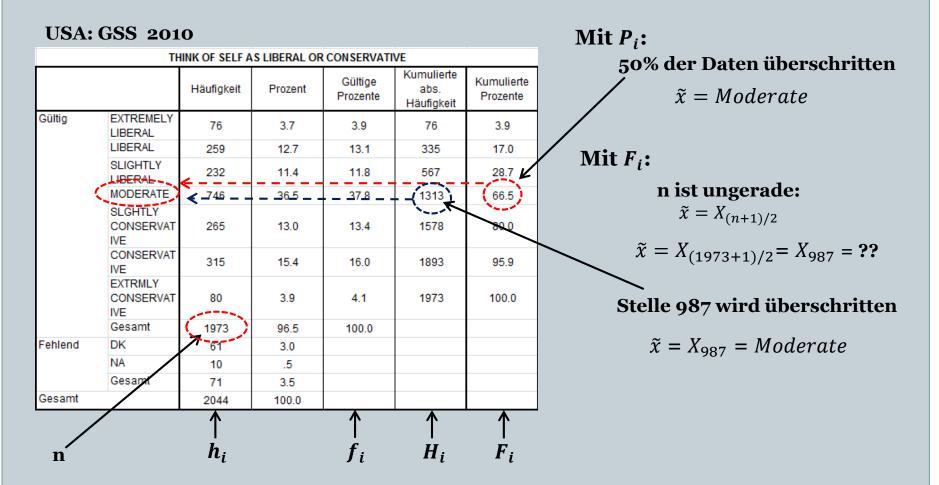
Diese Frage wurde 20 Schülern gestellt, es gab hierauf folgende Antworten:



 $f_5 = 10 \rightarrow D = 5$, das heißt: die häufigste Antwort der befragten Schüler/innen war "Nein, auf gar keinen Fall".

Lagemaße: Median

Median der Stichprobe (\tilde{x}): Die Ausprägung eines Merkmals, die genau in der Mitte liegt.


Wichtig: Um den Median zu bestimmen, muss die Stichprobe nach Größe geordnet werden.

Lagemaße: Median

5

Median mit Häufigkeitstabellen:

Lagemaße: Mittelwert

6

• Mittelwert der Stichprobe mit Häufigkeitstabellen: Man hat eine Stichprobe mit Umfang "n" und "k" verschiedenen Ausprägungen: i=1,2,...,k.

Mittelwert mit absoluter Häufigkeit (f_i): $\bar{x} = \frac{\sum_{i=1}^k f_i * i}{n}$

Mittelwert mit relativer Häufigkeit (p_i): $\bar{x} = \sum_{i=1}^{k} p_i * i$

Note für die Schule										
i	fi	p _i	Fi	Pi						
1	3	0,15	3	0,15						
2	7	0,35	10	0,5						
3	3	0,15	13	0,65						
4	2	0,1	15	0,75						
5	4	0,2	19	0,95						
6	1	0,05	20	1						
Gesamt	20	1								

$$\bar{x} = \frac{\sum_{i=1}^{6} f_i * i}{20} = \frac{3*1+7*2+3*3+2*4+4*5+1*6}{20} = \frac{60}{20} = 3$$

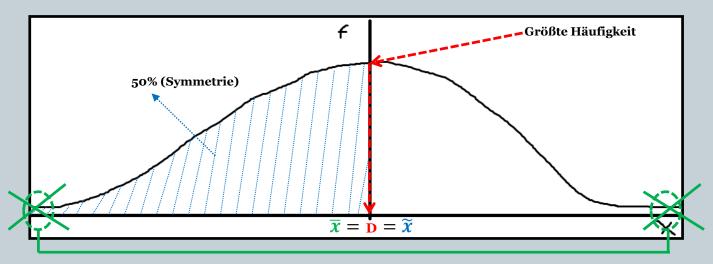
Mit p_i:

$$\bar{x} = \sum_{i=1}^{6} p_i * i = 0.15*1 + 0.35*2 + 0.15*3 + 0.1*4 + 0.2*5 + 0.05*6$$

 $\bar{x} = 3$

Lagemaße

7


• Zusammenfassung: Lagemaße für die verschiedenen Skalenniveaus

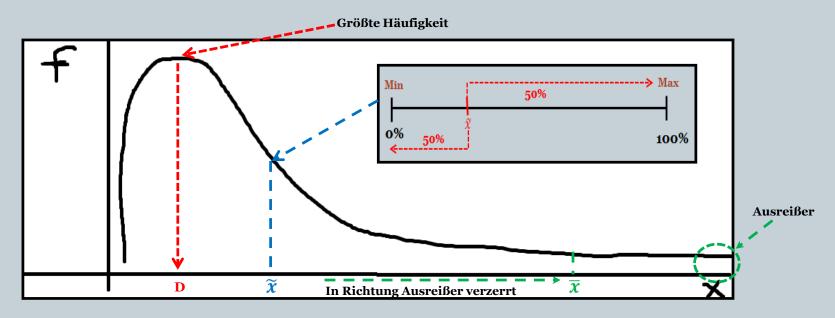
	D	\widetilde{x}	\overline{x}
Nominal			
Ordinal			•
Quantitativ			

Lagemaße: Verhältnis zueinander

8

Symmetrische Verteilung

Ausreißer neutralisieren sich!


Eine Häufigkeitsverteilung ist symmetrisch, wenn:

$$\mathbf{p} = \widetilde{\mathbf{x}} = \overline{\mathbf{x}}$$

Lagemaße: Verhältnis zueinander

9

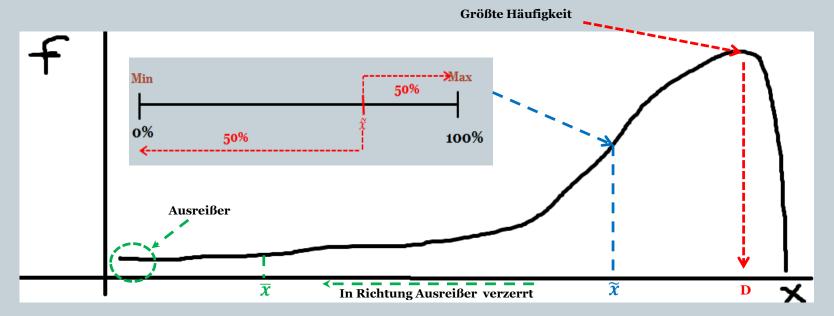
Linkssteile Verteilung

Eine Häufigkeitsverteilung "tendiert" dazu, linkssteil zu sein,

wenn

Aber auch, wenn

 $\mathbf{D} < \widetilde{x} < \overline{x}$


$$\mathbf{D} = \widetilde{x} < \overline{x}$$

$$\mathbf{D} < \widetilde{\mathbf{x}} = \overline{\mathbf{x}}$$

Lagemaße: Verhältnis zueinander

10

Rechtssteile Verteilung

Eine Häufigkeitsverteilung "tendiert" dazu, rechtssteil zu sein, wenn

Aber auch, wenn

$$\overline{x} < \widetilde{x} < \mathbf{D}$$

$$\overline{x} = \widetilde{x} < \mathbf{D}$$

$$\overline{x} < \widetilde{x} = \mathbf{D}$$

11

Aufgabe 1: Die Deutsch-Noten von 20 Schülern der Klasse 4.1 und Klasse 4.2:

Klasse 4.1	1	1	3	5	1	3	5	6	1	3	4	1	2	4	6	2	4	2	6	4
Klasse 4.2	1	5	4	1	6	4	5	5	2	3	5	6	5	6	4	2	3	3	4	3

- Berechnen Sie jeweils Mittelwert und Median
- Formulieren Sie jeweils einen Ergebnissatz ohne statistische Begriffe
- Vergleichen Sie die Klassen

Lösung: Als erstes werden die Häufigkeitstabellen für beide Klassen erstellt. So ordnen wir

die Stichproben effizient ein:

Klasse 4.1	fi	Fi	Pi
1	5	5	25%
2	3	8	40%
3	3	11	55%
4	4	15	75%
5	2	17	85%
6	3	20	100%
Total	20		

Klasse 4.2	fi	Fi	Pi
1	2	2	10%
2	2	4	20%
3	4	8	40%
4	4	12	60%
5	5	17	85%
6	3	20	100%
Total	20		

Aufgabe 1: Lagemaße der Klasse 4.1:

Klasse 4.1	fi	Fi	Pi
(1)	5	5	25%
2	З	8	4 0%
(3)←	տ	-11	55%
4	4	15	75%
5	2	17	85%
6	3	20	100%
Total	20		

Für den Median - (n=20) - Mit F_i:

$$\tilde{x} = (x_{n/2} + x_{(n/2)+1})/2 = (x_{10} + x_{11})/2$$

Von Position 9 bis Position 11 gibt es eine 3. Also $x_{10}=3$ und $x_{11}=3$

$$\tilde{x}_{Klasse4.1} = \frac{(x_{10} + x_{11})}{2} = \frac{(3+3)}{2} = 3$$

Für den Mittelwert - Mit f_i:

$$\bar{x}_{Klasse 4.1} = \frac{\sum_{i=1}^{6} f_i * i}{20} = \frac{5 * 1 + 3 * 2 + 3 * 3 + 4 * 4 + 2 * 5 + 3 * 6}{20} = \frac{64}{20} = 3,2$$

Also:

- Modus: Die häufigste Note in Klasse 4.1 ist 1.
- **Median:** 50% der Schüler in Klasse 4.1 haben die Note 3 oder besser/schlechter.
- Mittelwert: Die durchschnittliche Note der Klasse 4.1 ist 3,2.

13

Aufgabe 1: Lagemaße der Klasse 4.2:

Klasse 4.2	fi	Fi	Pi	
1	2	2	10%	
2	2	4	20%	
3	4	8	40%	
(4)	4	12	-60 %	
(5)	5	17	85%	
6	З	20	100%	
Total	20			
			· /	

Häufigste Note

 $D_{Klasse4.2} = 5$

F**ür den Median - (n=20) -** Mit P_i: 50% wird hier überschrittet

$$\tilde{x}_{Klasse4.2} = 4$$

Für den Mittelwert - Mit f_i:

$$\bar{x}_{Klasse4.2} = \frac{\sum_{i=1}^{6} f_i * i}{20} = \frac{2*1 + 2*2 + 4*3 + 4*4 + 5*5 + 3*6}{20} = \frac{77}{20} = 3,85$$

Also:

Größte Häufigkeit

- Modus: Die häufigste Note in Klasse 4.2 ist 5.
- **Median:** 50% der Schüler in Klasse 4.2 haben die Note 4 oder besser/schlechter.
- Mittelwert: Die durchschnittliche Note der Klasse 4.2 ist 3,85.

William Tarazona, Statistik I

14

Aufgabe 1: Vergleich der Klassen 4.1 und 4.2:

Lagemaße	Klasse 4.1	Klasse 4.2
D	1	5
$\widetilde{\mathbf{X}}$	3	4
$\bar{\mathbf{x}}$	3,2	3,85

Klasse 4.1 ist entsprechend aller drei Lagemaße besser als Klasse 4.2. Klasse 4.1 hat z.B. eine bessere durchschnittliche Note, und Klasse 4.2 hat am häufigsten Schüler/-innen, die nicht bestanden haben. Der Median ist auch in Klasse 4.1 besser.

Welche Verteilungsformen haben die zwei Klassen?

 $D_{Klasse\,4.1} < \tilde{x}_{Klasse\,4.1} < \bar{x}_{Klasse\,4.1}$ Die Verteilungsform der Noten der Klasse 4.1 ist laut Folie 9 Linkssteil.

 $\bar{x}_{Klasse\,4.2} < \tilde{x}_{Klasse\,4.2} < D_{Klasse\,4.2}$ Die Verteilungsform der Noten der Klasse 4.2 ist laut Folie 10 **Rechtssteil**.

 $\left(15\right)$

Lesekompetenz wird als ordinal behandelt. Lagemaße: Modal Klasse und Median Klasse:

	Größte Häufigkeit									
	Lesekon	/			Überschreitet die Position 16208					
	Untergrenze	Obergrenze	fi	fi / Fi /		Pi	Mi	Mi*fi		
	250	300	1013		1013	3.13%	275	278575		
	300	350	1875		2888	8.91%	325	609375		
	350	400	3150		6038	18.63%	375	1181250		
	400	450	4659		10097	33.00%	425	1980075		
Median Klasse ———	→ <4 50	500	5976		(16673)	51.43%	475	2838600		
Modal Klasse ———	→ < 500	550	6189		22862	70.53%	525	3249225		
	550	600	5159		28021	86.44%	575	2966425		
	600	650	3008		31029	95.72%	625	1880000		
	650	700	1387		32416	100.00%	675	936225		
	Sum	ıme	32416				Summe	15919750		

Für den Median:

n=32416 (gerade) \rightarrow Wir suchen in Position n/2=16208

Lagemaße – Aufgabe 2: Mittelwert

Lesekompetenz wird als Intervall behandelt. Lagemaße: Modus, Median und Mittelwert.

 $M_1 = \frac{(250 + 300)}{2}$ zu erhalten Lesekompetenz

325 * 1875

Untergrenze	Obergrenze	fi /	Fi	Pi	Mi	Mi*fi
250	300	101/3	1013	3.13%	275	278575
300	350	1875	2888	8.91%	325	609375
350	400	3/150	6038	18.63%	375	1181250
400	450	4659	10697	33.00%	425	1980075
450	500	5976	16673	51.43%	475	2838600
500	550	6189	22862	70.53%	525	3249225
550	600	5159	28021	86.44%	575	2966425
600	650	3008	31029	95.72%	625	1880000
650	700	1387	32416	100.00%	675	936225
Sun	nme	32416			Summe	15919750

575 * 5159

Damit haben wir folgendes:

 $M_5 = \frac{(450 + 500)}{2}$

$$D = 525 \text{ Punkte}$$

$$\tilde{x} = 475 \text{ Punkte}$$

Addiert, um alle Untergrenzen und Obergrenzen

$$D = 525 \text{ Punkte}$$
 $\tilde{x} = 475 \text{ Punkte}$ $\bar{x} = \frac{\sum f_i * M_i}{n} = \frac{15919750}{32416} = 491.11 \text{ Punkte}$

Lagemaße – Aufgabe 2: Mittelwert

17

Die Verhältnis der Lagemaße zueinander ist nur eine empirische Betrachtung – es passt ziemlich oft, aber es könnte sein, dass manchmal keiner der Fälle vorgekommen ist; in diesen Fällen würde es helfen, ein Histogramm der Daten zu zeichnen, um die Verteilungsform zu erkennen. Zum Beispiel in Aufgabe 2:

Welche Verteilungsform hat das Merkmal Lesekompetenzpunkte?

D = 525 Punkte

 $\tilde{x} = 475 \text{ Punkte}$

 $\tilde{x} < \bar{x} < D$

 $\bar{x} = 491.11$ Punkte

In diesem Beispiel haben die Lagemaße des Merkmals keine der Verhältnisse zueinander, die die verschiedenen Verteilungsformen erkennen lassen. Das heißt, man kann mit Hilfe der Lagemaße keine eindeutige Verteilungsform erkennen. Man könnte aber die Vermutung haben, dass die Verteilung wahrscheinlich rechtssteil ist, weil D das größte Lagemaße ist. Um sicher zu sein, könnte man das Histogramm der Daten zeichnen oder später (Streuungsmaße Vorlesung) ein Boxplot erstellen.